Ankan Dash

Computer Vision, Machine Learning, Deep Learning, Data Science +1 646 752 0335 • ad892@njit.edu • ankand2@illinois.edu • Newark, NJ

SUMMARY

PhD candidate in Computer Science with specialization in Computer Vision and AI. Skilled in Machine Learning, Computer Vision, Deep Learning, LLMs, VLMs, Python, Pytorch, TensorFlow, Keras, Scikit-learn, OpenCV, MATLAB, SQL, C++, HTML, CSS. My area of interest is Deep Learning for Computer Vision, LLMs and VLMs.

EDUCATION

New Jersey Institute of Technology
Relevant Courses: Machine Learning, Deep Learning, Deep Learning on Graphs, Data Structures and Algorithms, Database
Management System Design, Data Mining, Introduction to Big Data

Master of Science, Aerospace Engineering, Champaign, IL

Doctor of Philosophy, PhD in Computer Science, Newark, NJ

University of Illinois at Urbana-Champaign

Relevant Courses: Mathematical Methods I, Finite Element Analysis, Advanced Gas Dynamics, Aerospace Propulsion, Orbital Mechanics

WORK EXPERIENCE

AI/ML Computer Vision - Intern at Samsung Research America, Mountain View, CA	05/2024 – 08/2024
• Successfully developed real-time reverse pass-through feature. (Supervisor: Mr. Aamer Khani, Dire AR, VR).	ector Engineering - ML,
AI/ML Computer Vision - Intern at Samsung Research America, Mountain View, CA	05/2023 – 08/2023
• Successfully developed the POC for implementation of Apple's EyeSight feature and Diffusion Mode and restoration for Samsung Galaxy AI. (Supervisor: Mr. Aamer Khani, Director Engineering - ML, AR	e . e
AI – ML Engineer Intern at Samsung Research America, Mountain View, CA	06/2022 - 08/2022
 Successfully built deep learning-based computer vision models for Samsung's AR platform 	
Graduate Research Assistant at New Jersey Institute of Technology, Newark, NJ	01/2021 – Present
 Conduct research in the field of Computer Vision, LLMs, Deep Learning applications. 	
Graduate Research Assistant at University of Illinois at Urbana-Champaign, Champaign, IL	01/2018 – 12/2018
 Developed PIV and PTV models for flow field predictions over airfoils. 	
• Published 1 research paper to investigate free fall computational fluid dynamics of objects using PIV a	and 3D-PTV techniques.
PROJECTS	
Eye-See-You: Reverse Pass-Through VR with Full Head Avatars (IJCAI 2025)	06/2024 - 12/2024
• Developed a novel framework for reverse pass-through VR and one-shot full head avatar using reve	rse pass-through.
Developed a new dataset for simulation of VR scenario.	-
Flowchart Understanding using Vision-Language Models (NAACL 2025)	06/2024 – 12/2024
• Developed a novel approach for improving flowchart understanding by leveraging intermediate text	t representations.
Real-time reverse pass-through for VR headsets, Samsung Research America	05/2024 - 08/2024
• Successfully developed real-time realistic looking reverse pass-through and 3D avatar or digital pers	ona feature.
POC of Apple's EyeSight features for VR headsets, Samsung Research America	05/2023 - 08/2023
• Successfully implemented the POC for Apple's EyeSight feature. My approach does not require any 3 depth cameras.	D scan of the face using
 The approach generates outputs which are of high fidelity and natural looking. 	
GANeRFine: Universal GAN based NeRF refinement model	03/2024 – 09/2024
• Developed a GAN based model which can be used to refine the outputs of any NeRF based model.	
High Resolution Solar Image Generation using Generative Adversarial Networks	09/2020
Developed Deep Learning models to generate Solar images using Image-to-Image translation.	
TECH SKILLS	
	_

• LLMs, VLMs

•

Machine Learning

- Computer Vision, 3D
- PyTorch, TensorFlow
- HTML, CSS
- MATLAB, C++, Java

Deep Learning

- - Python, OpenCV, Scikit-learn
- Data Science

2019

2020 – Present

ADDITIONAL INFORMATION

Publication:

- Ankan Dash, Jingyi Gu, Guiling Wang, Chen Chen, "Eye-See-You: Reverse Pass-Through VR with Full Head Avatars". International Joint Conference on Artificial Intelligence, **IJCAI 2025**.
- Junyi Ye, Ankan Dash, Wenpeng Yin, Guiling Wang, "Beyond End-to-End VLMs: Leveraging Intermediate Text Representations for Superior Flowchart Understanding". NAACL-25. <u>https://arxiv.org/pdf/2412.16420</u>
- Ankan Dash, Jingyi Gu, Guiling Wang, "Self-Supervised Learning for User Localization." International Conference on Computing, Networking and Communications (ICNC 2024). <u>https://arxiv.org/pdf/2404.15370</u>
- Ankan Dash, Jingyi Gu, Guiling Wang, "Hier-GAN: Hierarchical Inpainting GAN with Auxiliary Inputs for Combined RGB and Depth Inpainting." CVPR Computer Vision in the Wild, 2024.
- Ankan Dash and Guiling Wang. 2024. "Attentive Partial Convolution for RGBD Image Inpainting" Companion Proceedings of the ACM on Web Conference 2024. <u>https://dl.acm.org/doi/pdf/10.1145/3589335.3651906</u>
- Ankan Dash, Junyi Ye, Guiling Wang, " A review of Generative Adversarial Networks (GANs) and its applications in a wide variety of disciplines -- From Medical to Remote Sensing. IEEE Access" <u>https://ieeexplore.ieee.org/iel7/6287639/6514899/10372211.pdf</u>
- Du, Wenlu, Ankan Dash, Jing Li, Hua Wei, and Guiling Wang. 2023. "Safety in Traffic Management Systems: A Comprehensive Survey" Designs 7, no. 4: 100. <u>https://doi.org/10.3390/designs7040100</u>
- Dash, A., Ye, J., Wang, G. et al. High-Resolution Solar Image Generation Using Generative Adversarial Networks. Ann. Data. Sci. (2022). <u>https://doi.org/10.1007/s40745-022-00436-2</u>
- Kim, Jin-Tae, Yaqing Jin, Shikun Shen, Ankan Dash, and Leonardo P. Chamorro (2020) "Free fall of homogeneous and heterogeneous cones." Physical Review Fluids 5, no. 9 (2020): 093801 <u>https://doi.org/10.1103/PhysRevFluids.5.093801</u>

Spoken Languages: English, Hindi, Odia

ONLINE CERTIFICATIONS

LLM Engineer Course by Udemy GANs by DeepLearning.AI on Coursera Deep Learning Specialization by DeepLearning.AI on Coursera Python Specialization by Udemy

PATENT APPLICATIONS

- 1. System for High-Resolution Image Generation (ATTORNEY DOCKET NO. 94350.00282)
- 2. Virtual Reality Headset System (ATTORNEY DOCKET NO. 94350.00283)
- 3. Virtual Reality Headset System (ATTORNEY DOCKET NO. 94350.00284)